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In this paper it is shown how to calculate the steady hypersonic inviscid flow, 
including a detached shock, around a blunt body. The steady flow is obtained as the 
limit for large time of time-dependent flow, starting with plane flow impinging on the 
body. The transient flow is the solution of a mixed initial-boundary-value problem 
for the partial differential equations of inviscid fluids which is solved by a difference 
scheme proposed by Lax and Wendroff. Our calculations show that by itself this dif- 
ference scheme tends to be unstable and does not converge to the steady flow; by 
adding an artificial viscosity term we have succeeded in stabilizing the calculation. 
Section 4 is a fairly convincing theoretical explanation of this stabilizing effect and 
a new stability condition is derived. 

Both plane and cylindrical symmetries are considered; in the cylindrical case a variant 
of Richtmyer’s [4] two-step version of the Lax-Wendroff difference scheme is used. 
This method, as does Richtmyer’s, requires much fewer arithmetic operations as 
compared with the one-step method. 
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1. INTRODUCTION 

This report continues the exploration of certain explicit difference methods for 
fluid dynamic computations in three independent variables. The application of 
the Lax-Wendroff method was extended to a more difficult problem the detached 
shock problem. The method of solution is to consider the problem to be of the 
mixed type, an initial- and boundary-value problem. By prescribing boundary- 
conditions both on the body and at the upstream and downstream regions and 
by prescribing the initial data, a time-dependent solution was generated from the 
above conditions. Solutions for large times were obtained and these correspond 
to the steady state. Both plane and axisymmetric flows were considered, and 
several difference methods were tested and compared. 

In a previous paper [l] results were presented for a series of calculations relating 
to compressible flows in channels. These flows contain oblique shocks and, for 
some shapes, Mach reflections. It was noted that if Mach reflection took place, 
there were oscillations present in the downstream region of the flow field, i.e., 
behind the normal shock wave and extending to the boundary; no such oscillations 
were detected for the case of regular reflection. It might be thought that the dif- 
ference between the two cases can be tentatively explained as follows: the treat- 
ment of the downstream boundary by extrapolation-introduced errors. In sub- 
sonic flow these errors propagate upstream and affect the accuracy of the solution 
but are swept out of the mesh in supersonic flows. 

However, severe difficulties were encountered in the numerical calculation of the 
detached shock problem. The solution of these difficulties shed light on the be- 
havior of the difference equations and, in return, on the nature of the oscillations 
encountered in the Mach reflection calculation. 

2. HYDRODYNAMIC DIFFERENTIAL EQUATIONS 

The conservation of mass, momentum, and energy in inviscid time-dependent 
fluid motion is expressed by equations of divergence form 

Here 
div cp = 0 . (2.1) 

cp = (w, f(w), g(w)) (2.2) 

and div is the partial operator in three-dimensional space-time 

div = ( ht + ( L + ( hy. (2.3) 
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Hence 
w,t + f,, + g,, = 0 2 

and w, f, and g are vectors. The components of w  are mass, momentum in the 
x- and y-direction, and the total energy, all per unit volume, i.e., 

The vectors f and g are nonlinear vector-valued functions corresponding to the 
fluxes in the X- and y-directions of the quantities w. 

For the case of axially symmetric flows the equations of motion take the 
slightly different form, 

div <p = h, (2.4) 

where the vector h = - v/v (w + x), nT = (0, 0, 0, p) and the coordinate y 
stands for the radial distance from the axis of symmetry. Equation (2.4) may be 
written in almost conservation form if the vector sT = (0, 0, p, 0) is introduced by 

(2.5) 

Expanding Eq. (2.4) by using the relations (2.2), (2.3), (2.4), and (2.5) yields 

w,,+f,,+g,,= --s. (2.6) 

Thus the vector cp is replaced by y<p in Eq. (2.4), while the inhomogeneous term s 
contains only one nonzero component in the radial momentum equation compared 
to four contained in h. For net points not on the axis of symmetry, Eq. (2.6) 
should be used for the generation of the difference scheme in axially symmetric 
flows. 

The pressure p may be expressed in terms of the conservation variables and the 
ratio of specific heats of the gas ,y, through 

p = (y - 1) (E - h2 + n”>Pel, (2.7) 
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where m = QU and n = QV. With the use of Eq. (2.7), the vectors f(w) and g(w) 
become 

g(w) = 

- 

e 
(1 - Y> --m(m2+n2)+yy 

2 

n 

nm 
e 

- 

-q-+(,-I)(E-~~} . 

1-Y 
2 

n(n2 + m”) + y 7 
- 

For axially symmetric flows, e is replaced by ye everywhere in the above ex- 
pressions. 

3. DIFFERENCE SCHEMES OF SECOND-ORDER ACCURACY 

The difference scheme that Lax and Wendroff used for one-dimensional calcu- 
lations [3] and for the two-dimensional version which was analyzed in [2] is 
based on the Taylor expansion 

w(t + At) = w(t) + At w,i + m/2 W,tt . (3.1) 

The error in the above expression is third-order in the time interval At. The second 
term may be evaluated by substitution of the differential equation (2.3). If (2.3) 
is differentiated with respect to the independent variable time, then - w,~~ is 
given by 

(5, + &/),t = (f,tLiz + (g&! 

(3.2) 

= LW,z + g&z + Wxz + gq,)l,, . 
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In (3.2) the matrices A and B are the Jacobians f,, and g,, respectively, and are 
given by 

A(w) = - 
(Y-3)X (Y- l)Y (1 -Y> 

Yxz+,I-;~(x~+ Y2) -,z+rl:)yl+y2) ol:;xY -;x 

0 0 --I 0- 
XY -Y -x 0 

B(w) = - 3-Y 2Y2$T 132 (Y--1)X (Y-3)Y (1-Y) 

yYZ+(l-y)Y(X2+Y2) (y-1)XY -yz+-- y,‘(3Y2+x2) -yY 
- - 

The abbreviations 

X = de, Y = n/e, Z = E/e 

have been used. 
Equations (2.3) and (3.2), when substituted into (3.1), yield 

We are using (2.1) in the form w,~ = f,, + g,, . 
To preserve the high-order accuracy, the terms containing first derivatives must 

be approximated by centered differences and the term containing the second 
derivatives, since it is o(dt2), may be approximated by uncentered differences. 
However, to center the entire expression, consider the vectors C evaluated at the 
half interval (see Fig. la) : 

(-J&7,2) - f(x+y y) ; f(x, JJ) + +(A+ + A){f(x+, Y> - f(x, Y) 

+ &t(x+, vf) + g(x, v’) - g(x+, v-1 - r&9 v-)1). 
(3.4a) 
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To form C (- dX/2), we wish to translate the argument X by the amount - AX. 
Multiplication by the translation operator T gives 

C(- dX/2) = T:f’ C(0X/2). (3.4b) 

Similarly, in the y-direction 

C(rfY/2) = I&> Y’> + g(x, Y) 
2 

- + +@+ + B) {Qfb+, y’) 
(3.4c) 

+ f(x+, Y> - f(x-3 y+) - f(x-9 UN + &G Y’> - g(? Y>> > 

and 

C(- dY/2) = TLT’ C(dY/2). (3.4d) 

We have used the notation A+ = A(x + dx), B+ = B(y + Ay), etc. Then the 
difference approximation to Eq. (2.1) is 

w(t + At) = w(t) + a {[C(dX/2) - C(- 0X/2)] + [C(dY/2) - C(- OY/2)]). 

(3.5) 

Here il = At/d where d = dx = dy. It is seen then, that by centering, the dif- 
ference scheme has one of the properties of the differential equation; it is in 
divergence free form. 

- 

FIG. la 

The solution of the axially symmetric equations can be achieved more simply 
by a two-step calculation analogous to the one developed by Richtmyer [4]. 
Two-step methods have the advantage of not requiring the computation of the 
matrices A and B and hence matrix-vector multiplication is eliminated. A variant 
of the two-step Lax-Wendroff scheme in two dimensions is: 
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Step I : generates temporary data at the four points (. ) (k = i & $, I 5.: j & A, 
t + At) from the nine points (cc) shown in Fig. lb from 

Wk,l(t + &At) = f(Wk+1,2,2+1,2 + Wk+l/z,Z-1i2 + wk-l12,Z+l/2 

+ wk-l/2,2-1,2) + +{fk+l,2,l+l,2 - fk-1,2,2+1/2 

(3.6) 

+ fk+l12,1-U2 - fk-l/2,2-1/2) + ;kk+l,2,1+l~2 - gk+llz,l-1:2 

+ a-1/2,z+1,2 - gk-l/2,2-1/2). 

Step 2: gives the final result in terms of the data at the nine points shown in 
Fig. lb’ from 

Wi,jO 4 ‘JO = w,,&> + +fi+l,j - fi-l,j + fJ+dt) 

(3.7) 

I 
X 

FIG. lb’ 
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The notation fd+dl expresses the fact that the x-centered difference in f obtained 
at time t + At should be evaluated from the formula: 

and similarly for gi fdL . Figure lb’ shows as solid lines the difference approxima- 
tions to f,, and g,, at t + At; the dashed lines are approximations at t. The 
onedimensional version of this scheme was originally suggested by. Wendroff. 
This two-step method centers all quantities at the point (i, j, t + h/2) by the 
averaging procedure contained in Eq. (3.7), just as is done by the method of 
Taylor expansion in Eq. (3.1). 

For axially symmetric flows, difference equations (3.6) and (3.7) are modified 
slightly. By inserting the terms 

Sk+1/2,1+1/2 + sk+l/Z,l-l/2 + Sk--1/2,1+1/2 + Sk-lW1/2) (3.6a) 

on the right-hand side of Eq. (3.6), and 

+i,&) + Sk,& + :jt)], skJ(t + At) = i ~(si+l,2~&:l,2)‘~+’ (3.7a) 

on the right-hand side of Eq. (3.7), the two-step method can be more ueseful for 
axially symmetric flows. Equations (3.6a) and (3.7a) center the inhomogeneous 
term at point (i, j, t + 3 At) consistent with the other terms in Eqs. (3.6) and (3.7). 

Equations (3.6) and (3.7) may be linearized by allowing f = Aw and g = Bw, 
where A and B are considered constant. Then, combining Eqs. (3.6) and (3.7) 
and substituting w(ldx, mdv) = w” exp [i(kJdx + k,mi3y)], one obtains the 
amplification matrix [5 ] 

G’ = I + iAa{i sinE + t sin6 cosq) + iBiz{f sin7 

A212 
+ t sin7 cosE} + ____ 2 (COG - 1) (1 + COST) 

B2?L2 
+-+cosq- l)(l +cosQ- AB:BAIb2sinEsinq, 

(3.8) 

where 6 = k,Ax, 17 = k,Ay and ?b = At/Ax. 
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It may be verified that (3.8) can be written as 

3 + cos ‘I 
4 + B sin 17 

3 + cos E 4 

- ${A[(1 - 
(3.9) 

cos ou + cos vy2 + B[(l - cos T)(l + cos []““}2. 

For E, 7 < 1 the approximations 

sin E = 6, 1 - cos E = P/2, I + cos F = 2 - P/2, 

may be used. Equation (3.9) becomes 

G’ = I+ iii(Al + Bl;r) - Jc(At + B?)” -t @‘(t”, 7”). 

Then, module terms of third order in E and 7, 

G’ = exp[il(A& + Bq)]. 

This is the exact amplification matrix of the differential equation w1 = Aw,+Bw, . 
Hence it is clear that the set of Eq. (3.6) and (3.7) are second-order accurate. 

4. A NONLINEAR INSTABILITY 

In a recent paper Lax and Wendroff presented a stability proof of the second- 
order difference method given by Eq. (3.5). We call the amplification matrix 
associated with the linearized form of Eq. (3.5) G; it is given by 

G(E, 7) = I + i(A sin 5 + B sin 7) - A2(1 - cos E) 

- Ba(l - cos 7) - AB + BA 
2 

sin l sin 7 . 
(4.1) 

In order to prove stability one has to show that all eigenvalues of the amplification 
matrix are 5 1 in absolute value (von Neumann condition); this follows if the 
inner product 

(Gq,q)6 1 (4.1’) 

for all unit vectors q. In fact (4.1’) implies that ] Gn 1 5 K for integer powers of 
n, i.e., n = 1, 2, . . . . The difference scheme associated with G will be stable, 
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at least if the coefficients of G are constant,3 since the solutions of the difference 
scheme (obtained by n successive multiplications of the difference operator) 
will be bounded. This is a consequence of the isometry of the L, norm when a 
Fourier transform is made on the linear difference operator to obtain the ampli- 
fication matrix. An analysis presented in [2] gives the following inequality: 

I (Gq, q) I2 5 1 - 1 Aq I”(1 - 8 IAq I”)(1 - cos Q2 
(4.2) 

- ( Bq I”(1 - 8 / Bq I”)(1 - cos 7)“. 

This expression is less than unity if the requirements 

A2 L i, B2 _( Q, 

are satisfied. For the case of equal spatial stepsize dx = LIP = d, this condition 
can be expressed as 

4t 1 -- 
A Iuq’ 

u* = max eigvalue of A or B. (4.3) 

In [l] it was shown empirically that the above stability condition is too stringent; 
it can be exceeded in practical applications without causing instability; in partic- 

K -Shock 

Supersonic flow 

FIG. lc 

a Recently, Lax and Nirenberg have shown how to extend this conclusion to G with variable 
coefficients. 
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ular, At/d = l/1/2 u*, which is twice as large as permitted by (4.3), yielded stable 
results. It was even possible to go slightly (= IO’%) beyond this numerical esti- 
mate. However, for the class of problems considered in this paper, even satisfying 
10% of condition (4.3) led to numerical instability during the early transient 
portion of the flow (pointwise values of the density Q and energy E were > lo3 and 
- 105, respectively, after which the density became negative). During this time, 
the shock, having been produced impulsively at the face of the body, was in the 
process of detaching itself; instabilities were observed in two regions: within 
the shock close to the axis of symmetry and at the corner of the body. The corner 
problem could be removed if a first-order difference approximation (discussed in 
Section 7) was used on the top of the body. But within the shock, negative den- 
sities were still obtained. 

Figure 2 shows schematically the growth of the solution, at the shock, when an 
instability is present. The highly oscillatory nature of the solution will grow in 
time if the calculation is allowed to continue. The data given in Figs. 2 and 3 were 

1 
n AMPLITUDE INCREASING IN TIME 

N cycles- 

-J 

--------XT 
DENSITY (NEGATIVE) 

FIG. 2. Schematic of instability occurring within the shock wave for modified Lax-Wendroff 
scheme; shows growth of 2dx-component of solution. 

obtained from results which were an attempt to eliminate the early instability 
(after approximately 60 cycles) that was obtained with Eq. (3.5). Here, a modifi- 
cation in the coefficient of the second term [5] in (3.4a), 1/4(A+ + A) . D, and in 
(3.4c), i2/4(B+ + B) . D, where D > 1, allowed the calculation to be carried out 
as far as 500 cycles, but eventually the phenomenon shown in Fig. 2 resulted. 
For D > 1, the accuracy of the difference scheme is no longer second-order. 



FINITE-DIFFERENCE CALCULATIONS FOR HYDRODYNAMIC FLOWS 209 

The result of a case for D = 3 is given in Fig. 3, which shows the shock position 
for successive times. However, at the point where the shock position becomes 
stationary (at approximately 490 cycles), instability results. Figure 2 shows growth 

420 

FIG. 3. Time-dependent solution showing shock position for modified Lax-Wendroff scheme. 
Numbers refer to computational cycles. 

of the amplitude of short-wavelength components of the solution for density Q. 
This instability was localized near the axis of symmetry at the shock. 

The fourth-order artificial viscosity term which is discussed in [2] was also 
tested with Eq. (3.5). It had virtually no effect on the stability of the numerical 
results. 

These results were surprising but can be explained by the following argument. 
Inequality (4.2) together with the stability condition show that the eigenvalues of 
G are, for E, 7 f 0, definitely less than one; this means that high-amplitude waves 
are damped. However, if ] Aq 1 and 1 Bq 1 happen to be zero, this damping is absent. 
Now j Aq 1, ] Bq ] can vanish if and only if zero is an eigenvalue of A of B. The 
eigenvalues of A, B are u & c, u and v f c, v. Hence, for points, lines, or surfaces 
in the flow where 

Condition I : u/c = 1 and 17 = 0, or v/c = 1 and 5 = 0 

(c is the local sound speed), or 

Condition II: u = 0 = v, 

one of the eigenvalues becomes zero. Condition I corresponds to local one-di- 
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mensional sonic flow, and Condition II corresponds to flow at stagnation points. 
If the sonic line is extended, it will pass within the shock (see Fig. lc) so that near 
the axis of symmetry, since the flow is locally one-dimensional, 7 = 0, Condition I 
occurs; i.e., there will be no damping for the associated linear difference scheme 
(4.2), and hence ](Gq, q) I2 = 1. Since this condition of neutral stability occurs 
in a part of the flow where the basis of applying linear analyses is weakest (where 
flow properties vary most rapidly), a statement of nonlinear stability is suspect. 
Such second-order schemes [including the two-step method given by Eqs. (3.6) 
and (3.7)] will probably need additional damping terms for successful results. 
These terms must be third-order so as to preserve the numerical accuracy. 

Based upon this explanation, it becomes clear that the oscillations experienced 
in the previous calculation [l] of Mach reflection resulted from a nonlinear insta- 
bility. In the case of oblique reflection there are no sonic lines and there were no 
oscillations observed. As the calculation proceeded, the properties at all data 
points converged to 6 places. The higher the free stream Mach number, the faster 
the convergence. However, for Mach reflection, a “sonic line” (Condition I) 
coincides with the normal shock and the slip line. Here the calculation converged 
slowly and oscillations were present in the region between the shock and the 
downstream boundary. For very low Mach-number values, A4 i 1.4, the so- 
lution never converged. 

The next section shows that a third-order viscosity in two dimensions can be 
introduced. 

5. ARTIFICIAL VISCOSITY IN Two DIMENSIONS 

We have seen that, in regions of flow which are locally one-dimensional, insta- 
bility can result at the shock wave which separates the supersonic region from the 
subsonic region or in the region of stagnation point flow. In order to damp oscil- 
lations which might be generated at the shock, an artificial viscosity, which is 
quadratic, will be added to the basic difference scheme. This will ensure that only 
at points where rapid variations occur will the viscosity influence the solution. 
When the solution tends to constancy the viscosity should vanish. These condi- 
tions allow the viscosity to be expressed in terms of two neighboring net points 
which are at states w  and w’, i.e., viscous term - Q( ] w  - w’ ] ) . (w(w) - w(w’)). 
We choose to write the viscosity in terms of the two additive factors 

$4(Q”( QJ, w’)&‘w) + + d,(Qg(w, o’)d,‘w) . (5.1) 

The undivided forward difference in the x- and y-direction is represented by the 
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operators d,’ and d,‘. It is reasonable to express QZ(IL), 0’) and Qv(w, w’) in terms 
of the matrices A and B so that (5.1) will be dimensionally correct, hence 

Q” = 2 anAn, Q” = c b,B”, n = 0, 1,2. (5.2) 

We have not included cross terms in the viscosity since it is expected that their 
behavior will not contribute substantially within the shock, especially if the shock 
is locally one-dimensional. 

We choose the coefficients ai , bi , i = 0, 1, 2, as follows: Let aa( i = 1, 2, 3, 
represent the eigenvalues of A(u & c, u); and ai( i = 1, 2, 3, the eigenvalues of 
B(v f c, v). Then coefficients Oli are written as differences of the eigenvalues a(A) : 

i= 1,2,3, jfi, kfi, j. (5.3a) 

Here the barred quantities are understood to be averages over the enterval (tu, w’), 
and xi may be a function of u or constant. This will ensure that if the flow is locally 
constant the oli will vanish. A similar relationship can be written for pi in terms 
of a(B). With this choice for CL and /3, the coefficients of Eq. (5.2) can be put in 
the form 

a, = Ii ai(Tj(Tk 9 
i=l,j#i,k+i,j 

a, = - %(aj + al,) 9 
i=l,j+i,k+i,j 

a,=O= ; ff,i. 
i=l 

Then the matrices defined in (5.2) can be given by 

or&A - d,Z) (ii - dkl) , 
i=l,j+i,k+i,j 

Q”= ;: pi(B - djl) (B - 8kZ)) . 
i=l,jfi,k+i,j 

(5.3b) 

(5.4) 

It is clear that, with such a choice of coefficients the eigenvalues or Q” of Q” 
will be proportional to the difference of the eigenvalues of A or B in the interval 
(w, CL)‘), i.e., 

Q = 4 xi 1 ai - ai [ . I. 
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Hence, since there will always be at least one nonzero eigenvalue, the viscosity 
will contribute to the solution in regions where the solution varies most rapidly. 
This will ensure us that the difference scheme will have dissipation. 

Therefore the complete difference scheme obtained by combining Eq. (3.5) 
with the artificial viscosity given by Eq. (5.1) is 

w(t + At) = w(t) + ~~{OJ&$(x) + Q Q"Dz'w1 
+ D,L$W) + 8 Q”4’W>. 

(5.5) 

We have used L,C(x) = &{C(X + dx) + C(x)] = C(dx/2) as the forward 
averaging operator, and D, and 0,' as the centered and forward difference opera- 
tors, respectively. 

For the Lagrangian system of hydrodynamic equations these coefficients reduce 
to that given by Lax and Wendroff, i.e., 

a, = 0 = a, ) 

u2 = L ic I c(w) - c(w’> I 
2 F2 . 

In the next section we use this Lagrangian form of the viscosity to show stabil- 
ity of the Lax-Wendroff scheme with the added artificial viscosity. 

6. STABILITY ANALYSIS OF SECOND-ORDER SCHEME WITH VISCOSITY 

In order to study the stability of the difference schemes we first linearize the 
equations by taking the matrices A and B to be locally constant. We assume that 
the real matrices A, B are symmetric or at least they can be symmetrized by a 
similarity transformation. Also, for simplicity, let dx = /ly = _It = 1. We also 
take the viscosity to be of the form 

Q(A,B)=Q”(A)+Qy(B)=gaAz+:pB2, (6.1) 

where 01 and /? are constant. This choice of Q is then substituted into (5.1) and the 
result is linearized, i.e., 8 CI A2 0," w + +,19 B2 Dg2 w, where the second difference 
operator is represented by D2. Take the Fourier transform of the above and add 
it to the amplification matrix given by Eq. (4.1); the result is 

G(.f, 7) = I + i(A sin 6 + B sin 7) - (1 + 4 a)A2(1 - cos 6) 

- (1 + -$‘I) B2(1 - COST) - AB i BA sinlsinv. (6’2) 
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The proof basically parallels that presented by Lax and Wendroff [2]; we give all 
steps for completeness. 

We wish to estimate the quantity (Gq, q) for all unit vectors q. G is separated 
into its real and imaginary parts 

where 

G=X+iY, 

and 

Y = A sin 6 + B sin 7 

X-II-R 

with 

R-(l+~a)AZOi-(1+~P)B2~+ ABzBA sinEsin?. (6.3) 

We have used the definitions 0 = 1 - cos & and @ = 1 - cos 7, NOW 

(Gq, q) = (Xq, n) + i(Yq, 4) 

Since A and B are real and symmetric, it follows that X and Y are real and sym- 
metric; hence 

I ml9 s> I2 = ml9 s>” + (Yq, 412 * (6.4) 

R can be given by the identity 

The proof proceeds by computing the right-hand side of Eq. (6.4). By using the 
abbreviations x = (Xq, q), y = (Yq, q), and r = (Rq, q), the absolute value of 
the real part of the inner product of the amplification matrix is 

(6.6) 

Now the identity in R, Eq. (6.5), is used to obtain the second term in Eq. (6.6), 
and the definition of R, given by Eq. (6.3), is used for the evaluation of P. Taking 
the inner product of Eq. (6.5) and using the Schwartz inequality (Y2q, q) = 
[ Yq 1” 2 y2, we obtain 

(6.7) 

To obtain 1 (Rq, q) 12, multiply Eq. (6.3) by q and form the inner product. One 
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of the resulting terms, Re(Aq, Bq) sin 6 sin 7, may be estimated by the Schwartz 
inequality 

5 IAq/ Isin /Bq/ Isin~1~~{/~~12~+/~~12~~~ 

The trigonometric inequalities 0 2 3 sin2 t and @ 2 4 sin2 p have been used. 
Using this result, we conclude that 

r I I Aq I2 (2 + 8 a> @ + I Bq I2 (2 + 4 B> @ 

or 

r2 5 ( / Aq 1”)” O2 {(2+q)l+ (2+;)(2+3} 

+Wq;2j2~{(2+~)2+ (2+9 (Z+;)}. 

(6.8) 

Substituting Eqs. (6.8) and (6.7) into Eq. (6.6) gives 

x2 -t y2 5 1 - 1 Aq I2 ((1 +- a) - cl1 / Aq I”} O2 

- I Bq I2 ((1 + P> = - B’ I Bq I”} @‘. 
(6.9) 

We have used the trigonometric inequalities (for 5, 7 - n) O2 2 0 and Q2 2 (I, 
(short-wavelength disturbances must be damped so that their growth will not 
affect the numerical solution; see Fig. 2) to obtain Eq. (6.9). The right-hand side 
is less than one if 

I Aq 1’ = I a(A)q I2 L q ; 1 Bq I2 = / a(B)q I2 5 q. (6.10) 

1y1 and 8’ are abbreviations for the quantities in brackets in Eq. (6.8). 
It is interesting to note that Eq. (6.9) is of the same form as Eq. (4.2j. The argu- 

ment presented in Section 4 on nonlinear stability would appear to hold in the 
present case. It must be concluded [in light of the numerical experiments perform- 
ed with Eq. (5.5)] that linearization eliminates many important features of the 
difference scheme, e.g., nonlinear terms (see Richtmyer and Morton [7]). For the 
simple case of equal coefficients for the viscosity, Eq. (6.10) becomes 

a2(A) _( - 1+a 
2(2 + f3/212 ==fk>. 

The max of f(a) is for cx = 2, f(2) = &. Hence there is hope that the scheme 
will be stable for 
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(6.11) 

while a similar expression holds for G(B).* This is somewhat larger than the value 
1/2/8(a = 0) obtained by Lax and Wendroff. The term given by Eqs. (5.1) and 
(6.1), which is an artificial viscosity, clearly has a stabilizing influence on the 
difference scheme Eq. (3.5), since the allowable time increment is larger. Similar 
results hold for the more complicated forms of viscosity used in the numerical 
calculation, i.e., Eqs. (5.1) and (5.2). 

The test of the stability condition was made using a constant to represent the 
right-hand side of (6.11). This numerical value was fed into the IBM 7094 via a 
data card and the resulting solution was checked every 30 cycles of computation. 
No other changes were made and the results appear in Table I. The theoretical 
limit r < .408 (which is close to the Lax Wendroff value of .354) agrees within 
the accuracy obtained with the numerical estimate of Table I. Additional experi- 
ments will be performed, especially for the case of axially symmetric flows. 

TABLE I 

r= jaj,dt/d Condition 

.65 

.55 

.45 

.35 

Unstable at 90 cycles 
(negative densities) 

Negative velocities at 350 cycles near stagna- 
tion point 

Negative velocities at 640 cycles near stag- 
nation point 

No negative densities or velocities at 2500 
cycles 

The fact that the velocities became negative for some values of r is in itself not an 
instability. The solution in the region of the stagnation point did start to diverge 
from the known solution when negative velocities were observed. As the compu- 

’ Although a and @ are not arbitrary constants but depend on the solution about which 
linearization is performed, locally the stability limit imposed by Eq. (4.3) may be relaxed for 
the condition given by Eq. (6.11). In practical applications, however, the difference is unimpor- 
tant and Eq. (4.3) may be used. 
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tation proceeded the situation became worse since the negative values of the 
x-component of velocity propagated into the mesh from the stagnation point. 
At this point the calculation for the case was terminated. 

7. NUMERICAL RESULTS 

The results of two calculations are presented. The difference scheme (5.5), 
which includes the artificial viscosity (5.1), was used to obtain these results. The 
coefficient x in Eq. (5.3a) was initially set equal to 2, but during the course of the 
calculation it was reduced to 1; also dx = 0~ = d = 1. The free-stream Mach 
number is 4.3, and y, the ratio of specific heats, is 1.4. The flow was started im- 
pulsively by using the free-stream conditions as initial data. In Fig. 4 we plot 

CYCLE NUMBER 

FIG. 4. Convergence of time-dependent solution. Stagnation density (M = 4.3, y  = 1.4). 

stagnation density vs. number of cycles. Beyond the 2340th cycle the values 
of density everywhere in the flow field are constant to four figures; clearly 
the method converges. However, the shock standoff position assumed a steady 
value after approximately several hundred cycles of computation. The accuracy 
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in the calculation of the stagnation density is exceptionally good while the 
error of 0.96% in the computed stagnation pressure is consistent for the 
method. Figure 5 shows the density for values of y as a function of X. The 

6.0. 

COMPUTED f = 5.166690, 
STFGNATION STREAMLINE 

5.0 y=o 
/EXACT p i 5.166691 

y= 1.0 

Q4.0 
> 
k 
2 u 3.0 y= 2.2 
0 

2.0 

:.JJA 

yz3.4 

1.0 
0 0.25 0.5 0.75 I.0 1.25 1.5 

DISTANCE DOWNSTREAM OF LEFT BOUNDARY 

FIG. 5. Density distribution along some coordinates y  = constant, normalized with body 
radius, M = 4.3, y  = 1.4. 

abscissa in Figs. 5 and 10 have been normalized so that 1 occurs at mesh 
point 14. The distance y has been normalized by the radius of the body. The 
corner of the body is at x = 1.28. For y = 1, it is seen that there is a rapid 
variation of the density corresponding to the corner expansion. For y = 2.2, 
the density, after the shock, decreases linearly, corresponding to the fluid expand- 
ing past the body. The complete flow field is shown in Fig. 6; the values on the 
abscissa correspond to the positions of the mesh points. Here the position of the 
shock and sonic line are shown with respect to the body. The dashed curve re- 
presents the sonic line computed with the scheme of Lax given in 1952. 

w(t + At) = w(t) + A(D,f + Dug) + L12(Dz2w + D,%v). (7.1) 

Equation (7.1) is a first-order method. When using this difference scheme, the 
point of attachment of the sonic line to the body is greater than 3 space increments 
from the body corner. This difference method has an effective artificial viscosity 
coefficient which varies as At-l. Hence its use is only practical for large time steps, 
and, even using the largest allowable stepsize, the smearing effect is substantial, 
i.e., the shock width may be N 15dx. On the other hand the high-order scheme, 
Eq. (5.5), gives the position of the sonic line correctly, i.e., within a fraction of 
one mesh point of the corner, while the shock width is given over two or three 
cells. 
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As shown in Fig. 7, the Mach number at the corner is 0.975. One mesh point 
to the right on top of the body the Mach number is 2.04, but it is 0.666 one mesh 
point below the corner, on the body face (in these calculations the body face was 
defined by 10 increments). Beyond the corner the Mach number increases very 
rapidly, indicating a strong rarefaction wave. 

34 
i 

Y  

30. 

26. 

2 4 6 6 IO 12 14 16 I6 20 22x 

FIG. 6. Flow field showing detached shock and sonic line for M = 4.3, y  = 1.4; detachment 
distance = 1.16. 

Thus the difference scheme is able to handle such rapid variations of the flow 
quantities; this is again indicated by the distribution of pressure ratio along the 
body given in Fig. 8. In Fig. 9 the entropy distribution along the stagnation 
streamline is shown. The theoretical value of entropy at the stagnation point 
can be calculated exactly; it is 2.24, and the computed value is 2.20. The abrupt 
entropy change near the comer and the oscillation on top of the body are very 
likely due to the fact that the vertical component of velocity was computed on the 
top of the body rather than prescribed to be zero. This was done so as to observe 
the number of space steps needed to approach the correct value. This meant that 
improper values of entropy, mass, etc., were introduced into the flow because 
of false boundary conditions. The entropy distribution d above the body is shown 
and it approaches the theoretical correct value. The sharp rise in the value of the 
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S-ARC LENGTH ALONG BODY SURFACE 

FIG. 7. Mach number distribution along blunt body, M = 4.3, y  = 1.4. 

.8- 

.6- 

.4- COMPUTED STAGNATION PRESSURE, 
pi 0.929, EXACT = 0.938 0 

.2- 

0 0.25 0.5 0.75 
S-ARC LENGTH ALONG BODY SURFACE 

Fig. 8. Pressure ratio along blunt body. A4 = 4.3, y  = 1.4. 
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entropy at the corner is presumably due to the artificial viscosity acting on the 
steep rarefaction gradients at the corner. The artificial viscosity could not be 
switched off in this region, especially at the corner. Since the rarefaction wave 

2, 

AY ABOVE BODY 

BODY STREAMLINE 

J e- 
STAGNATION POINT CORNER 

COMPUTED As,/k 2 201 

EXACT: 2,242 

STAGNATION STREAMLINE 
Gt 
LTi 
d 

FIG. 9. Entropy distribution along stagnation streamline and body streamline. 

is centered at this point on the body, the numerical solution behaves like a “rare- 
faction shock” (a sharp decrease in density and pressure) with an attendant un- 
dershoot eventually leading to negative densities. In order to resolve this problem, 
additional work is necessary. Figures 10 and 11 show some results for the case 
in which M = 10 and y = 1.17. In this calculation it was found necessary to 
introduce the function 

I 4.7 

12: 

I 0. 

8: 

y=O STAGNATION STREAMLINE 

F~CO~~PLJTED 011197 

1.0 1.25 I5 I64 
DISTANCE DOWNSTREAM OF LEFT BOUNDARY 

FIG. 10. Density distribution along some coordinates y  = constant, normalized with body 
radius M = 10, y  = 1.17. 
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Or 

x=x,(l+exp(l-/uI/x,)) if lul/x,Il, 

x=1 otherwise; 

for the coefficient of viscosity given in Eqs. (5.3a), x1 was chosen to be of the order 
of the velocity behind the strong normal shock, while x,, was between one half 
and one; 1 u 1 is the magnitude of the velocity. Using this form for the viscosity 
coefficient has the effect of providing additional damping near the stagnation 
point. This damping was not required for the previous case (A4 = 4.3) since the 

24- 

22- 

20. 

18 

16. 

14. 

12. 

lot 

/I/...- BOW SHOCK 

FIG. 11. Flow field showing detached shock and sonic line for M = 10, y  = 1 .17; detachment 
distance = 0.49. 

shock was well away from the body. It is felt, for the case M = 10, that if unequal 
spacing were chosen in the x-direction, so that there would be more steps between 
the shock and the body, additional damping would be unnecessary. 
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